Minimal completely separating systems of sets
نویسندگان
چکیده
Let [n] denote an n-set. A subset,) of [n] i from j if i and j t/:. 5'. A collection of k-sets n called (n, k) completely if, for each ordered pair j) E [n] x [71,] with i n which i from j. Let denote the size of a smallest (71" k) completely Amongst other things, it will be shown that R( 71" k) for n > except when n (Hl) 1, and R(71" k) k + 1 for G) n k 2 /2. These results build on and extend those in Ramsay et a1 [8].
منابع مشابه
Completely separating systems of k-sets for (k-12) ≤ n < (k2) or 11 ≤ k ≤ 12
Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with |A| = k for each A ∈ C. Values of R(n, k) are determined for ( k−1 2 ) ≤ n < (k 2 ) or 11 ≤ n ≤ 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.
متن کاملSeparating Systems of k - sets for k = 11 or k = 12
R(n,k) denotes the minimum possible size of a completely separating system C on {1,2,…,n} with |A|=k for each set A of C. Values of R(n,k) are determined for k=11 or k=12 and several other results are mentioned. Using the dual interpretation of completely separating systems as antichains, it provides corresponding results for dual k-regular antichains.
متن کاملOn the number of minimal completely separating systems and antichains in a Boolean lattice
An (n)completely separating system C ((n)CSS) is a collection of blocks of [n] = {1, . . . , n} such that for all distinct a, b ∈ [n] there are blocks A,B ∈ C with a ∈ A \B and b ∈ B \A. An (n)CSS is minimal if it contains the minimum possible number of blocks for a CSS on [n]. The number of non-isomorphic minimal (n)CSSs is determined for 11 ≤ n ≤ 35. This also provides an enumeration of a nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 13 شماره
صفحات -
تاریخ انتشار 1996